46 research outputs found

    An Evaluation of Millimeter-wave Radar Sensing for Civil Infrastructure

    Get PDF

    Asset Integrity Monitoring of Wind Turbine Blades With Non-Destructive Radar Sensing

    Get PDF

    Three professions come together for an interdisciplinary approach to 3D printing: occupational therapy, biomedical engineering, and medical librarianship

    Get PDF
    Background: Although many libraries have offered 3D printing as a service or available technology, there is a lack of information on course-integrated programs for 3D printing in which the library played a primary role. Therefore, librarians at the Touro College School of Health Sciences began exploring 3D printing for inclusion in the occupational and physical therapy curriculum. Case Presentation: The goal of this project was to educate occupational and physical therapy students and faculty about the potential applications of 3D printing in health care and provide hands-on experience, while increasing collaboration between librarians and faculty. Students’ tasks included designing and creating a 3D-printed assistive device as part of their course. Conclusion: Students were able to successfully print assistive devices, demonstrating the feasibility of 3D printing in a health sciences curriculum. Librarians involved with this project reached approximately 78 students and 200 other librarians and faculty members. 3D printing at Touro College continues to evolve and expand; the trial 3D printing course is being reviewed for formal adoption into the occupational therapy curriculum, and additional funding for 3D printing technologies is currently being allocated by Touro administration

    Analysis of Geomaterials using Frequency Modulated Continuous Wave Radar in the X-band

    Get PDF

    Analysis of sandstone pore space fluid saturation and mineralogy variation via application of monostatic K-band frequency modulated continuous wave radar

    Get PDF
    In this paper we present the preliminary findings from a world first investigation into monostatic frequency modulated continuous wave (FMCW) radar analysis of porous sandstones and their fluid content. FMCW results, within 24 to 25.5 GHz, provide insights into the rock/pore system as well as into mineral and liquid distributions, both crucial for quantitative representation of the fluid-rock system for subsequent assessment of the sandstones. Sandstone samples, here characterised using known techniques of energy dispersive x-ray analysis, gaseous secondary electron and backscattered electron imaging are: Darney, Lazonby Locharbriggs and Red St. Bees sandstones, with FMCW results indicating that, in the K-Band, calculated values for relative permittivity, utilising free-space radiation reflection data, give results that are consistent with the known rock elemental constituents, where each sandstone has different distributions of the dominant quartz and subsidiary other minerals and of grain size and shape distributions. The experimental results support the sensitivity of this sensing modality to variances in rock properties in typical sandstones with complex relative permittivity, ε_r^*, values for unsaturated sandstones ranging from 5.76 to 6.76 and from 12.96 to 48.3 for partially saturated sandstones, with the highest values indicating high permittivity mineral inclusion and/or grain angularity

    Interactive Digital Twins Framework for Asset Management Through Internet

    Get PDF

    Subsea power cable health management using machine learning analysis of low frequency wide band sonar data

    Get PDF
    Subsea power cables are critical assets for electrical transmission and distribution networks, and highly relevant to regional, national, and international energy security and decarbonization given the growth in offshore renewable energy generation. Existing condition monitoring techniques are restricted to highly constrained online monitoring systems that only prioritize internal failure modes, representing only 30% of cable failure mechanisms, and has limited capacity to provide precursor indicators of such failures or damages. To overcome these limitations, we propose an innovative fusion prognostics approach that can provide the in situ integrity analysis of the subsea cable. In this paper, we developed low-frequency wide-band sonar (LFWBS) technology to collect acoustic response data from different subsea power cable sample types, with different inner structure configurations, and collate signatures from induced physical failure modes as to obtain integrity data at various cable degradation levels. We demonstrate how a machine learning approach, e.g., SVM, KNN, BP, and CNN algorithms, can be used for integrity analysis under a hybrid, holistic condition monitoring framework. The results of data analysis demonstrate the ability to distinguish subsea cables by differences of 5 mm in diameter and cable types, as well as achieving an overall 95%+ accuracy rate to detect different cable degradation stages. We also present a tailored, hybrid prognostic and health management solution for subsea cables, for cable remaining useful life (RUL) prediction. Our findings addresses a clear capability and knowledge gap in evaluating and forecasting subsea cable RUL. Thus, supporting a more advanced asset management and planning capability for critical subsea power cables

    Three professions come together for an interdisciplinary approach to 3D printing: occupational therapy, biomedical engineering, and medical librarianship

    Get PDF
    Background: Although many libraries have offered 3D printing as a service or available technology, there is a lack of information on course-integrated programs for 3D printing in which the library played a primary role. Therefore, librarians at the Touro College School of Health Sciences began exploring 3D printing for inclusion in the occupational and physical therapy curriculum. Case Presentation: The goal of this project was to educate occupational and physical therapy students and faculty about the potential applications of 3D printing in health care and provide hands-on experience, while increasing collaboration between librarians and faculty. Students’ tasks included designing and creating a 3D-printed assistive device as part of their course. Conclusion: Students were able to successfully print assistive devices, demonstrating the feasibility of 3D printing in a health sciences curriculum. Librarians involved with this project reached approximately 78 students and 200 other librarians and faculty members. 3D printing at Touro College continues to evolve and expand; the trial 3D printing course is being reviewed for formal adoption into the occupational therapy curriculum, and additional funding for 3D printing technologies is currently being allocated by Touro administration

    Environmental release, fate and ecotoxicological effects of manufactured ceria nanomaterials

    Get PDF
    Recent interest in the environmental fate and effects of manufactured CeO2 nanomaterials (nanoceria) has stemmed from its expanded use for a variety of applications including fuel additives, catalytic converters, chemical and mechanical planarization media and other uses. This has led to a wave of publications on the toxicological effects of nanoceria in ecological receptor species, but only limited information is available on possible environmental releases, concentrations in environmental media, or environmental transformations. In this paper, we make initial estimates of likely environmental releases and exposure concentrations in soils and water and compare them to published toxicity values. Insufficient information was available to estimate aquatic exposures, but we estimated inputs to a hypothetical wastewater treatment plant that could result in effluent concentrations that would result in acute toxicity to the most sensitive aquatic organisms tested so far, cyanobacteria. The purpose of this exercise is to identify which areas are lacking in data to perform either regional or site specific ecological risk assessments. While estimates can be made for releases from use as a diesel fuel additive, and predicted toxicity is low in most terrestrial species tested to date, estimates for releases from other uses are difficult at this stage. We recommend that future studies focus on environmentally realistic exposures that take into account potential environmental transformations of the nanoceria surface as well as chronic toxicity studies in benthic aquatic organisms, soil invertebrates and microorgansims
    corecore